Хранение Пшеницы Влажность

Содержание

Хранение зерна. Влияние влажности и температуры. Сушка.

Дыхание зерна

При хренении зерна, вследствие расхода сухого вещества зерна на дыхание, вес хранящегося зерна постоянно уменьшается. При хранении 1 тонны зерна 30%-ной влажности в хранилище при 18 С в течение суток теряется около 1 кг веса зерна. Правильно организованное хранение зерна должно быть направлено к максимальному снижению трат сухого вещества и, следовательно, достижению возможно низкой убыли веса зерна в процессе хранения.

Зерно — живой организм с большим запасом питательных веществ, который проявляет жизнь дыханием, происходящим за счет содержащихся в зерне углеводов. Если зерно хранят при низких температурах, то дыхание его почти полностью прекращается. Процесс дыхания в общей форме может быть выражен уравнением

В результате биохимических процессов, происходящих при хранении, идет разложение части органического вещества зерна на дыхание с выделением углекислоты и воды, причем часть имеющейся воды вновь поглощается зерном.

Важнейшими факторами определяющими энергию дыхания зерна являются его влажность и температура. Интенсивность дыхания сильно возрастает при повышенной влажности и температуре. При уменьшении влажности до воздушно сухого состояния (10 — 12 %) дыхание практически прекращается.

В таблице приведены показатели пшеничного и ржаного зерна различной влажности (при температуре 25 С), по данным Кретовича.

Таблица 18. Изменение дыхательной активности зерна в зависимости от влажности.

Влажность зерна в %

100 г за 24 часа

Дыхательный коэффициент СО22

поглощают О2 в мг

выделяют СО2 в мг

Пшеница Гордеиформе 432 10,6 0,26 0,41 1,58 14,6 0,33 0,69 2,09 15,7 0,27 0,73 2,70 16,8 2,12 2,52 1,18 17,7 7,25 7,01 0,97 17,8 7,84 8,04 1,02

Пшеница Мультирум 321 14 ,4 0,07 0,27 3,86 16,0 0,33 0,42 1,27 17,0 1,99 2,22 1,11 17,6 6,21 5,18 0,83 19,2 8,90 8,76 0,98 21,2 17,73 13,04 0,73

Рожь Новозыбковская 14,4 0,16 0,25 1,56 15,3 0,22 — — 16,7 1,12 1,45 1,29 17,8 5,42 5,76 1,06 20,6 24,58 20,04 0,81

Из данных таблицы 18 можно заключить, что резкое усиление энергии дыхания пшеничного и ржаного зерна начинается при завышении влажности сверх 15%. Вода, содержащаясяв в зерне, При этой влажности прочно связана с коллоидами зерна и поэтому не может явиться растворителем и той водной средой, которая необходима для протекания биохимических реакций.

На рис. 13 показано дыхание пшеничного зерна, а на рис. 14 — проса различной влажности.

Из обоих рисунков видно, что при влажности зерна менее 15—16% дыхательные коэффициенты несколько больше единицы, так как в зерне нормальной влажности происходит не только нормальное аэробное, но и анаэробное дыхание.

Энергия дыхания сильно возрастает при повышении влажности и температуры, что подтверждают данные таблице 19, в которой показано количество миллиграммов СО2, выделяемое при хранении 1 кг ячменя в сутки.

Таблица 19. Энергия дыхания зерна в зависимостн от влажности

Выделение СО2 в мг при температуре

Влажность в %
15 1 8 30 40 52
От 10 до 12 0,35 0,35
Ог 14 до 15 1,40 1,40 7,50 20-40 249
От 19 до 20 3,59 125-359
33 700,00 2021

Из данных табл. 19 видно, что на интенсивность дыхания в большей степени влияет повышение влажности, чем повышение температуры, хотя повышение температуры вызывает увеличение энергии дыхания. Энергия дыхания достигает максимума при 55 градусах (рис 15). Усиленное проветривание также увеличивает энергию дыхания.

На рисунок 16 показано количество СО2 выделенное 1 кг ржи разной влажности, хранившейся в течение 28 суток при различных температурах.

Следует отметить, что повышение температуры с 19 до 31 градусах увеличивает количество выделяемой СО2 при влажности 16,9% в 4 раза (с 1699 до 6711 мг), а увеличение влажности с 12,8 до 19,3% при 19 градусах Цельсия усиливает интенсивность дыхания в 155 раз (с 38 до 4383 мг),

При влажности зерна 20% интенсивность дыхания в 3 раза больше, чем при 35%, причем самодыхание начинает проявляться лишь при 8°, оно заметно при 10°, затем интенсивность его быстро возрастает и при 20° оно в 4 раза больше, чем при 10°.

Считают, что критическая влажность, при которой резко увеличивается интенсивность дыхания, составляет для ржи и пшеницы 13—14% для ячменя и овса 14—15%. Мелкие зерна дышат сильнее крупных, богатый азотом ячмень сильнее, чем бедный, щуплое к битое зерно дышит более энергично, чем нолное и целое.

Необходимо обратить внимание на то, что усиленное дыхание вызывает значительное выделение не только СО2, но и воды, и так как зерно — плохой проводник тепла, то при сильном дыханни зерна наблюдается значительное повышение температуры. Последнее в свою очередь увеличивает интенсивность дыхания и вызывает дальнейшее повышение температуры. Одновременно начинается процесс прорастания зерна. Процесс траты органического вещества вследствие интенсивного дыхания может, таким образом, продолжаться без дальнейшего поступления влаги и тепла.

Наряду с дыханием в сильно влажном зерне проявляется жизнедеятельность вредных микроорганизмов, под влиянием которых зерно гниет и делается затхлым. Затхлое и сгнившее зерно — плохое сырье для производства спирта. Выход спирта из такого зерна понижается вследствие уменьшенного содержания крахмала и сахара в зерне, а также от того, что появляющиеся в зерне продукты гниения препятствуют нормальному протеканию процесса брожения.

На основании изложенного можно прийти к выводу, что лучшие условия хранения — это низкие температуры (лучше всего 0 — 5 ) и возможно меньшая влажность зерна.

При отсутствии доступа кислорода к зерну происходит анаэробное, так называемое интрамолекулярное дыхание, в процессе которого образуются углекислота и этиловый спирт:

Интрэмолекулярное дыхание может продолжаться до тех пор, пока накопляющиеся вредные продукты разложении плазмы его окончательно не подавят. При последующем доступе кислорода может восстановиться нормальное дыхание клетки, которое разрушает образовавшиеся в результате интрамолекулярного дыхания продукты расщепления.

Сущность порчи зерна состоит в распаде органического вещества вследствие усиленного дыхания и активирующего влияния на него окислительных ферментов — оксидаз и пероксидаз. Вначале распаду подвергаются углеводы, а затем и белки, из них в первую очередь — высокомолекулярные белковые вещества, от которых зависит способность зерна к прорастанию. При разложении белков зерна образуются продукты распада входящих в состав белковой молекулы аминокислот жирного и ароматического ряда. В зависимости от температуры и влажности окружающей среды всхожесть зерна может увеличиваться или уменьшаться. Ниже, приведены предельные соотношения между влажностью зерна (пшеницы) и температурой.

Температура , С -20 -15 -10 -5 5 10 15 20 30 40 50 60 70 80 90 100 110
Содержание воды в % 20 19 18 17 16 15 14 13 12 11 10 9 8 7 5 3 1

Таким образом, при -10 С зерно может потерять влагу не ниже 18%, при +20 С влажность его может понизиться до 12%. Всю влагу зерно может потерять лишь при 110 С.

Нарушение соотношения между температурой и процентным содержанием воды вызывает отдачу или поглощение влаги из окружающего воздуха и изменение содержания воды в разных слоях хранящегося зерна. Если, например, зерно влажностью 16% сложено на хранение при температуре 15 С, то влажность его может понижаться до 13%; внутренние слои будут высыхать и отдавать воду окружающему воздуху, насыщая его парами воды. При соприкосновении воздуха помещения с холодными стенами и крышей помещения или более холодными струями воздуха может произойти конденсация паров, которые в виде росы осядут на верхние слои зерна и вызовет в них сначала усиленное дыхание, затем прорастание, а при высокой влажности — даже порчу. Отсюда видно, что вода перемещается в зерне вследствие внутренних процессов, происходящих при дыхании зерна, и под влиянием внешних условий окружающей среды. Кроне того, возможно увлажнение зерна вследствие его гигроскопичности и адсорбции воды на зерне. Гигроскопичность зерна связана с наличием химических соединений жадно притягивающих водяные пары и затем постепенно их усваивающих. Адсорбция вызывается поверхностными силами на оболочках зерна. Гигроскопичностью обусловливается поглощение влаги, а адсорбцией — поглощение, всех газообразных веществ,

Разница в величине поглощения зерном воды в парообразном и капельножидком состоянии (в процентах к весу зерна в воздушно сухом состоянии) характеризуется следующими данными.

Зерно Газообразная вода Капельножидкая вода
Ячмень 8,2 48,2
Просо 8,6 25,0
Овес 5,5 59,8
Кукуруза 6,7 44,0
Рожь 5,1 57,7
Пшеница 5,7 45,6

Как видно из этих данных, зерно может поглотить в 3—10 раз парообразной воды, чем капельножидкой, в количестве, недостаточном для прорастания. При суточной перемене температуры днем и ночью имеет место выпадение росы (капельножидкой воды), за счет которой влажность зерна может сильно увеличиваться.

В результате биохимических процессов, происходящих при хранении, идет разложение части органического вещества зерна на дыхание с выделением углекислоты и воды, причем часть имеющейся воды вновь поглощается зерном.

Вследствие расхода вещества зерна на дыхание вес хранящегося зерна уменьшается. При хранении 1 тонны зерна 30%-ной влажности в хранилище при 18 С в течение суток теряется около 1 кг веса зерна. Правильно организованное хранение зерна должно быть направлено к максимальному снижению трат сухого вещества и, следовательно, достижению возможно низкой убыли веса зерна в процессе хранения.

В результате биохимических процессов, происходящих при хранении, идет разложение части органического вещества зерна на дыхание с выделением углекислоты и воды, причем часть имеющейся воды вновь поглощается зерном.

Сохранность и качество зерна: определяем влажность при хранении

Влажность — основополагающий показатель для высокой сохранности зерна. Даже не значительное превышение этого показателя приводит к неминуемой порче зерновой массы. Поэтому, крайне важно точно и своевременно определять влажность при закладке зерна на хранение.
Заготовители зерна широко используют этот параметр для занижения качества и снижения закупочной цены. В условиях снижения экспорта российского зерна в 1916 – 1917 годах и как следствие падения закупочных цен для зернопроизводителей, особенно важно точно и своевременно научится исследовать показатели влажности, как одного из основных качественных параметров зерновой массы.
Систематическое определение влажности зерна является необходимым условием правильной организации процесса его послеуборочной обработки и хранения. Влажность определяют во всех поступивших партиях зерна. На основании анализа устанавливают необходимость и режимы сушки зерна. В процессе сушки влажность зерна определяют каждые 2 ч, а при налаживании режима обработки — через 1ч. На основании данных об изменении влажности зерна при сушке рассчитывают производительность сушилок.
Влага зерна – это наиболее важный и надежный фактор регулирования жизнедеятельности зерновой массы, применяемый в практике работы с зерном. Влага в зерне является средой, в которой протекают все жизненные процессы. Дыхание очень сухого зерна ничтожно мало и не всегда фиксируется приборами.
Увеличение влажности активизирует ферментные системы и усиливает обмен веществ. Однако, интенсивность дыхания зерна возрастает при этом не прямолинейно, а по кривой, имеющей переломную критическую зону. Первые порции влаги, поглощенные сухим зерном, усиливают дыхание незначительно. При достижении зерном определенного уровня влажности (для большинства зерновых культур это около 15%) интенсивность дыхания резко возрастает. Влажность, при которой это происходит, получила название критической. Дальнейшее увлажнение зерна вызывает усиление дыхания со все возрастающей скоростью.
Понятие о критической влажности является основополагающим в теории и практике хранения зерновых масс. Критическая влажность характеризует глубокое качественное изменение состояния влаги в зерне. В докритическом диапазоне влажности, вплоть до 14 % (у основных зерновых культур), вся вода в зерне настолько прочно удерживается коллоидными веществами и. активными центрами поверхности микрокапилляров, что утрачивает свойства растворителя и не может обеспечить благоприятные условия для ферментативного гидролиза органических веществ, т. е. дыхания. Вся влага у такого зерна находится в связанном состоянии, и оно характеризуется как сухое зерно. Зерно основных зерновых культур считают сухим, если его влажность не превышает 14 %, у льна 11 %, у подсолнечника 7%.
Не менее важным в объяснении особой роли критической влажности зерна является тот факт, что на сухом зерне не могут развиваться микроорганизмы, которые являются основным фактором его порчи при хранении.
Таким образом, критической влажности соответствует такой уровень влажности зерна, при котором в нем появляется свободная вода, резко усиливается интенсивность дыхания, становится возможным повреждение микроорганизмами. Следовательно, чтобы защитить зерно от быстрой порчи, обеспечить его надежную длительную сохранность, необходимо как можно быстрее после уборки обеспечить его просушку до влажности ниже критического уровня, т. е. до сухого состояния.
Критическая влажность неодинакова у зерна разных культур. Как и в случае с равновесной влажностью, она в большой степени зависит от химического состава зерна. Чем больше содержится жира, неспособного удерживать влагу, тем ниже уровень критической влажности зерна, и чем больше содержание белка и крахмала, тем выше величина критической влажности.

Рекомендуем прочесть:  Сколькотхранится В Хододильнике Шаурма

Критическая влажность зерна пшеницы, ржи, ячменя находится в пределах 14,5. 15,5 %, у высокомасличного подсолнечника она 7. 8 %. У гороха 15. 16 %. Если не учитывать содержание жира и провести расчет только на гидрофильную часть зерна или семян, критическая влажность будет почти во всех случаях близка к 15 %. Такое же единство прослеживается при сопоставлении критической и равновесной влажности.
Для большинства сельскохозяйственных культур оказалось, что критическая влажность соответствует равновесной влажности зерна, устанавливающейся при 75 %-ной относительной влажности воздуха. Поэтому хранение или активное вентилирование зерновых масс воздухом с относительной влажностью ниже 75 % способствует повышению стойкости материала. Более надежно в таких случаях брать за ориентир влажность воздуха 65. 70 %. Это обусловлено тем, что в атмосфере такого воздуха зерно и семена становятся сухими, т. е. не имеют свободной влаги. При влажности окружающего воздуха выше 70 % возможно увлажнение сухой зерновой массы и ухудшение ее сохранности. Таким образом, сопоставляя фактический уровень влажности зерна с критической влажностью для данной культуры, можно установить пригодность каждой конкретной партии к хранению, или необходимость его подсушки и охлаждения.
Влагу удаляют высушиванием навесок размолотого зерна в электрических сушильных шкафах при температуре 130 °С в течение 40 мин (по ГОСТ 13586.5-85 – в течение 60 мин ) и последующим охлаждением в осушенном эксикаторе. По разности массы навесок зерна до и после высушивания рассчитывают его влажность.
Из пробы зерна, выделенной для определения влажности и помещенной в банку с крышкой или в бутылку, отделяют 20 г зерна и размывают его на лабораторной мельнице в течение 30…60 с. Крупность помола должна обеспечивать проход полученного шрота через проволочное сито с ячейками Ø 0,8 мм не менее 50 % и остаток на сете с ячейками Ø 1 мм – не более 5 %. Размолотое зерно помещают в банку с притертой крышкой и тщательно смешивают. Затем отбирают две навески размолотого зерна в предварительно взвешенные бюксы и отвешивают точно по 5 г. Навески можно брать непосредственно из мельницы. Открытые бюксы с размолотым зерном (крышку используют как поддон) помещают в заранее разогретый сушильный шкаф температура снова поднимется до 130°С, фиксируют начало высушивания. Через 60 мин бюксы с навесками вынимают из шкафа щипцами, закрывают крышками и переносят в эксикатор на 15…20 мин до полного охлаждения. Затем бюксы взвешивают и по разности массы до и после высушивания определяют влажность зерна. Все взвешивание проводят с точностью до 0,01 г. Если навеска равнялась точно 5 г, влажность в процентах получают умножением массы испарившейся влаги на 20. Например, в процессе высушивания испарилось воды в первом бюксе 0,42 г, во втором 0,40 г. В этом случае влажность навесок зерна будет 0,42*20=8,40% и 0,40*20=8,00%, средняя влажность анализируемого зерна составит 8,2%.
Если влажность зерна более 18%, его трудно размалывать, увеличивается время размола, возрастают потери влаги на испарение. В таких случаях влажность зерна определяют методом с предварительным подсушиванием. Для этого отвешивают 20 г испытуемого зерна, помещают его в неглубокую чашку Ø 8…10 см или сетчатые бюксы и подсушивают в сушильном шкафу при температуре 105°С в течение 5…10 мин, после чего охлаждают в открытой чашке и взвешивают. Полученное зерно размалывают, отбирают от него две навески точно по 5 г и высушивают, как описано выше (при температуре 130°С, 40 мин). Влажность (%) зерна определяют по формуле

Влажность — основополагающий показатель для высокой сохранности зерна. Даже не значительное превышение этого показателя приводит к неминуемой порче зерновой массы. Поэтому, крайне важно точно и своевременно определять влажность при закладке зерна на хранение.
Заготовители зерна широко используют этот параметр для занижения качества и снижения закупочной цены. В условиях снижения экспорта российского зерна в 1916 – 1917 годах и как следствие падения закупочных цен для зернопроизводителей, особенно важно точно и своевременно научится исследовать показатели влажности, как одного из основных качественных параметров зерновой массы.
Систематическое определение влажности зерна является необходимым условием правильной организации процесса его послеуборочной обработки и хранения. Влажность определяют во всех поступивших партиях зерна. На основании анализа устанавливают необходимость и режимы сушки зерна. В процессе сушки влажность зерна определяют каждые 2 ч, а при налаживании режима обработки — через 1ч. На основании данных об изменении влажности зерна при сушке рассчитывают производительность сушилок.
Влага зерна – это наиболее важный и надежный фактор регулирования жизнедеятельности зерновой массы, применяемый в практике работы с зерном. Влага в зерне является средой, в которой протекают все жизненные процессы. Дыхание очень сухого зерна ничтожно мало и не всегда фиксируется приборами.
Увеличение влажности активизирует ферментные системы и усиливает обмен веществ. Однако, интенсивность дыхания зерна возрастает при этом не прямолинейно, а по кривой, имеющей переломную критическую зону. Первые порции влаги, поглощенные сухим зерном, усиливают дыхание незначительно. При достижении зерном определенного уровня влажности (для большинства зерновых культур это около 15%) интенсивность дыхания резко возрастает. Влажность, при которой это происходит, получила название критической. Дальнейшее увлажнение зерна вызывает усиление дыхания со все возрастающей скоростью.
Понятие о критической влажности является основополагающим в теории и практике хранения зерновых масс. Критическая влажность характеризует глубокое качественное изменение состояния влаги в зерне. В докритическом диапазоне влажности, вплоть до 14 % (у основных зерновых культур), вся вода в зерне настолько прочно удерживается коллоидными веществами и. активными центрами поверхности микрокапилляров, что утрачивает свойства растворителя и не может обеспечить благоприятные условия для ферментативного гидролиза органических веществ, т. е. дыхания. Вся влага у такого зерна находится в связанном состоянии, и оно характеризуется как сухое зерно. Зерно основных зерновых культур считают сухим, если его влажность не превышает 14 %, у льна 11 %, у подсолнечника 7%.
Не менее важным в объяснении особой роли критической влажности зерна является тот факт, что на сухом зерне не могут развиваться микроорганизмы, которые являются основным фактором его порчи при хранении.
Таким образом, критической влажности соответствует такой уровень влажности зерна, при котором в нем появляется свободная вода, резко усиливается интенсивность дыхания, становится возможным повреждение микроорганизмами. Следовательно, чтобы защитить зерно от быстрой порчи, обеспечить его надежную длительную сохранность, необходимо как можно быстрее после уборки обеспечить его просушку до влажности ниже критического уровня, т. е. до сухого состояния.
Критическая влажность неодинакова у зерна разных культур. Как и в случае с равновесной влажностью, она в большой степени зависит от химического состава зерна. Чем больше содержится жира, неспособного удерживать влагу, тем ниже уровень критической влажности зерна, и чем больше содержание белка и крахмала, тем выше величина критической влажности.

Режимы хранения и вентилирования зерна пшеницы в металлических силосах большой вместимости

По инструкциям [2, 3], при хра­нении в металлических ёмкостях зерно должно находится в сухом и очищенном состоянии. Разрешено хранить зерно влажностью не более 14%. В инструкции [3] предельно допустимые сроки хранения даны дифференцированно по влажности для двух климатических зон: южной и остальных районов производства и заготовок зерна, кроме южной.

К южной зоне отнесены Краснодар­ский и Ставропольский края, Ниж­нее Поволжье. Из такого деления следует, что сроки хранения зерно­вых масс, закладываемых на хране­ние в разных климатических зонах, но с одинаковыми температурой и влажностью, различаются почти в 2 раза. По инструкциям, срок хранения зависит от места распо­ложения зернохранилища. Деле­ние страны по зонам сделано из предположения о том, что высокая теплопроводность ограждающих стен обуславливает влияние наруж­ного воздуха на температуру зерна. Однако исследованиями учёных ВНИИЗ [9, 10] установлено, что на изменение температуры окружа­ющей среды реагирует не более 2% массы зерна в хранилище. Это — периферийные слои около стен и поверхностный слой, толщина которых составляет 50-150 мм. Вследствие низких коэффициен­тов температуро- и теплопрово­дности, зерновая масса сохраняет температуру в силосе, независимо от изменений снаружи.

Сохранность зерна более суще­ственно зависит от его темпера­туры при закладке на хранение, чем от местоположения силоса. Поэтому предельно допустимые сроки целесообразно уточнять относительно температуры и влаж­ности зерна, закладываемого на хранение.

Лабораторными исследова­ниями ВНИИЗ [1, 4, 5] установ­лено, что зерно пшеницы влаж­ностью 11-15% при температуре 10°С может храниться до 12 мес без изменения показателей каче­ства, а при температуре 20°С -12 мес, но только с влажностью не более 12%. В зерне влажностью 13-14% после трёх месяцев хра­нения наблюдается ухудшение посевных свойств, уменьшение активности дегидрогеназ, увели­чение кислотного числа жира, а к 9 мес приблизительно в 2 раза уве­личивается интенсивность дыха­ния. При температуре 30°С хране­ние зерна без ухудшения качества наблюдалось в течение двух меся­цев при его влажности не более 13%. При влажности 13-14% ухуд­шение качества зерна происходило уже в первый месяц хранения. По истечении трёх месяцев показа­тели качества значительно ухуд­шились: снизились натура, энергия прорастания и всхожесть зерна, а также качество клейковины, уве­личились кислотное число жира и интенсивность дыхания.

На основе изложенного предла­гаются следующие ориентировоч­ные предельно допустимые сроки хранения зерна пшеницы и ячменя в металлических силосах. Для ячменя, менее стойкого к хране­нию, приняты меньшие сроки хра­нения, по сравнению с пшеницей, согласно действующим инструк­циям [2, 3].

В металлическом силосе наи­более неблагоприятные условия хранения создаются в верхней части зерновой насыпи. Инструк­ция [3] рекомендует контролиро­вать относительную влажность воздуха в пространстве над зер­ном силоса с помощью психроме­тра Ассмана. В случае превышения относительной влажности воздуха в силосе, по сравнению с относи­тельной влажностью наружного воздуха, рекомендуется обеспечить вентилирование пространства над зерном. Это требование инструк­ции [3] невозможно выполнить, так как не указана периодичность кон­троля, а люки для обслуживания в крышах силосов для длительного хранения зерна расположены, как правило, на высоте около 20 м.

Рекомендуем прочесть:  Условия Хранения Груши Поздние Сорта

Чтобы определить условия, при которых необходимо вентилиро­вание верхней части силоса, были измерены температура и относи­тельная влажность воздуха в верх­нем слое зерна и в простран­стве над зерном в промышленном металлическом силосе. Измере­ния в верхнем слое проводили на глубине около 0,07 м, а над зер­ном — на расстоянии около 0,6 м от поверхности зерновой массы. Одновременно с параметрами воз­духа внутри силоса измеряли тем­пературу наружного воздуха.

Исследования проводили в силосе диаметром 12,5 м, высо­той вертикальной стенки 20 м при общей высоте 26 м, вместимостью 2021 т, заполненного зерном пше­ницы влажностью 12,5%, массой 1800 т.

Для измерения параметров воз­духа использовали сертифициро­ванные, серийно выпускаемые автономные регистраторы дан­ных с габаритными размерами: 100x25x23 мм. Эти регистраторы одновременно измеряют и запи­сывают температуру и относитель­ную влажность воздуха в месте сво­его расположения. Периодичность записи регулируется от 2 с до 24 ч. В наших исследованиях параметры воздуха фиксировались каждые 30 мин, т.е. 48 измерений в тече­ние суток. Погрешность измере­ния температуры в пределах от -40 до +70°С составляла 2°С, погреш­ность измерения относительной влажности воздуха в пределах от 10 до 95% — 5%. Периоды, в кото­рых измеренное значение отно­сительной влажности составляло 95% (и более), относили к неже­лательным для хранения, учиты­вая возможность образования кон­денсата.

Из представленных на рис. 1 данных следует, что в первые 9 сут хранения температура воз­духа в пространстве над зерном (под крышей силоса) соответство­вала температуре наружного воз­духа и находилась в диапазоне 6-13°С. Влагосодержание прак­тически не изменялось и состав­ляло около 7 г/м 3 . В последующие сутки температура наружного воз­духа резко снизилась до -2°С, но температура в пространстве над зерном повысилась, в отдельные сутки свыше 18°С. Также повы­силось и влагосодержание до 12 г/м 3 . Это свидетельствует о перемещении воздуха внутри силоса, что косвенно подтверж­дают данные об уменьшении тем­пов охлаждения и сорбции влаги в верхнем слое за счёт подо­грева из глубинных слоев зерна и выброса влаги в пространство над зерном. При повышении тем­пературы в верхней части силоса наблюдались периоды повышения относительной влажности до 95% (и более), при которых возможно образование конденсата (см. ниж­нюю часть рис. 1).

При хранении зерна в металли­ческом силосе требуется принуди­тельное вентилирование простран­ства над зерном, которое необхо­димо проводить в случаях, когда температура над зерном выше тем­пературы наружного воздуха более чем на 10°С. Прекращать вентили­рование следует при достижении равенства температур внутри и сна­ружи силоса.

Металлические силосы, предна­значенные для длительного хране­ния зерна, оснащены установками для вентилирования, с помощью которых зерно охлаждают наруж­ным воздухом с более низкой тем­пературой, по сравнению с зерно­вой массой. Как показывают иссле­дования [4], поток воздуха, пода­ваемый вентилятором в зерновую массу, равномерно распределяется по площади сечения силоса прак­тически сразу. Статическое давле­ние воздуха по поперечному сече­нию силоса одинаковое. Исходя из кинетики охлаждения [4, 6], в целях сокращения затрат почти в 2 раза, зерно целесообразно охлаждать до температуры, вычисляемой по фор­муле:

где Тк конечное значение температуры зерна после охлаждения; Тн началь­ное значение температуры зерна; Тн.в температура наружного воздуха.
На рис. 2 приведены измене­ния параметров воздуха внутри силоса при вентилировании зерна, выполненном 28.10.2021 г. с 10 до 13 ч. На протяжении периода вен­тилирования повысились значе­ния параметров воздуха в меж­зерновом пространстве верхнего слоя и в пространстве над зер­ном. Увеличение относительной влажности воздуха в пространстве над зерном достигло критического уровня 95%. Дальнейшее венти­лирование привело бы к увлажне­нию поверхностного слоя зерна и к ухудшению его показателей качества.

Экспериментально уста­новлено, что при вентилировании могут создаться условия, ухудша­ющие сохранность качества зерна. Поэтому перед выполнением этой технологической операции необ­ходимо оценить степень её риска. Чтобы предотвратить образова­ние конденсата, зерно следует вентилировать воздухом, имею­щим параметры, при которых рав­новесная влажность меньше фак­тической влажности хранящегося зерна.

Литература

  1. Закладной, Г. А. Комплекс для сохранения зерна в металлических силосах / Г.А. Закладной // Хлебо­продукты. — 2021. — №8. — С. 68.
  2. Инструкция № 9-7-88 «По хранению зерна, маслосемян, муки и крупы». — М.: Минхлебпродукты, 1988.-33 с.
  3. Общий технологический регламент для элеваторов и хлебо­приёмных предприятий. — М.: Россельхозакадемия, 2021. — 77 с.
  4. Разворотнев, А. С. Измене­ние параметров воздуха внутри металлического силоса при хране­нии пшеницы / А.С. Разворотнев, Ю.Д. Гавриченков, И.А. Кечкин // Сб. ст. II науч.-практ. конф. — Краснодар, 2021.- С. 34.
  5. Разработка рекомендации по хранению, вентилированию и обезза­раживанию зерна в силосах новых кон­струкций из сборного железобетона с конструктивной защитой диаметром 6 м и в металлическом исполнении диаметром 15,2; 18 и 22,8 м: Отчёт о НИР — М.: ВНИИЗ, 1983. — 62 с.
  6. Сорочинский, В.Ф. Кинетика охлаждения зерна после сушки на установках активного венти­лирования / В.Ф. Сорочинский // Актуальные проблемы сушки и термовлажностной обработки материалов в различных отраслях промышленности и агропромыш­ленном комплексе. — Курск: Универ­ситетская книга, 2021. — 485 с.

А. С. Разворотнев, канд. техн. наук,Ю.Д. Гавриченков, канд. техн. наук,
И.А. Кечкин, ВНИИЗ, филиал «ФНЦ пищевых систем им. В.М. Горбанова» РАН

Статья опубликована в журнале:
Хлебопродукты. – 2021. — №11. – С.57-59.

Исследования проводили в силосе диаметром 12,5 м, высо­той вертикальной стенки 20 м при общей высоте 26 м, вместимостью 2021 т, заполненного зерном пше­ницы влажностью 12,5%, массой 1800 т.

Основные условия и нормы правильного хранения зерна

Благодаря использованию новейших технологий в агропромышленном комплексе удалось увеличить общую урожайность пшеницы, ржи, овса, ячменя и кукурузы, валовой сбор которых достиг в Российской Федерации за прошлый год отметки в 116118 млн. тонн. Таким образом, отмечается 13% прирост урожайности по сравнению с 2021 годом. Залогом успешного бизнеса является не только высокая урожайность, но и способность предприятия сохранить его до следующего посевного сезона. Поэтому требования к хранению зерна также довольно высоки.

Элеваторы и их виды

Специальные зернохранилища, в которые помещается весь собранный урожай, называются элеваторами. По сути, это огромные, хорошо оборудованные технические комплексы, которые подразделяются на несколько видов:

  • Заготовительные зерновые базы;
  • Базисные хранилища;
  • Перевалочные склады;
  • Производственные элеваторы;
  • Фондовые комплексы;
  • Портовые зерносклады;
  • Реализационные комплексы.

Каждый из этих комплексов имеет свои особенности и назначение.

Заготовительные зернохранилища

Зерносклады заготовительного типа или хлебоприемные комплексы служат для временного хранения зерна. Возводятся такие сооружения зачастую недалеко от больших сельскохозяйственных предприятий. Такие складские комплексы обычно используются для хранения и первичной обработки зерна. Кроме того, заготовительные элеваторы используются для подготовки зернового сырья к посеву. Высушенное и очищенное зерно вскоре транспортируется по назначению с помощью железнодорожного транспорта, автомобильного или водного сообщения.

Базисные элеваторы

Вторым пунктом назначения урожая являются базисные зернохранилища. Здесь собранный урожай подвергается более тщательной очистке, и хранится с целью дальнейшего потребления. В таких комплексах зерно сортируется согласно требованиям конкретного предприятия и хранится в очень больших объемах однородными партиями. Базисные склады размещаются, как правило, в районах крупных узловых станций и транспортных путей.

Перевалочные хранилища

Элеваторы такого типа в основном используются для кратковременного хранения зерновых. Они возводятся вблизи фермерских хозяйств в районах примыкания крупных железнодорожных и водных маршрутов. Такое зерно предназначается для транспортировки на дальние расстояния, поэтому на перевалочных пунктах оно перегружается с одного вида транспорта на другой. В редких случаях перевалочные пункты используются для долгосрочного хранения зерновых культур.

Производственные элеваторы

Эти предприятия являются своеобразными вспомогательными депо для пищевых заводов по производству муки, круп, комбикормов и т.д. Так как их назначением является бесперебойное обеспечение перерабатывающих фабрик зерновым сырьем, то и размер хранилищ будет зависеть от мощностей последних.

Фондовые комплексы

Название этих элеваторов говорит само за себя, ведь предназначены они для постоянного хранения зерновых в течение определенного количества лет. По сути, это хранилища зерновых ресурсов государственного назначения. Фондовые заготовительные комплексы имеют изначально очень большую емкость и наполняются лишь высококачественным зерном. Забор и отправка зерна из этих элеваторов происходит в случае обновления запасов или при возникновении дефицита. Поэтому возводятся такие хранилища с учётом доступности к крупным железнодорожным веткам.

Портовые зернохранилища

С базисных и перевалочных складов зерновые культуры перевозят в портовые комплексы, которые используются в качестве временного хранилища и подготовки зерна на экспорт. После обработки зерновых культур высокотехнологичным оборудованием они отгружаются на морские суда и транспортируются за пределы государства. Такие элеваторы также могут служить в качестве пунктов приема иностранного зерна для внутрироссийского рынка. Оснащены портовые хранилища, как правило, оборудованием высоких технологий и имеют очень большую емкость, чтобы обеспечить не только высокое качество продукции, но и удовлетворить объёмам внешнего и внутреннего рынка.

Реализационные базы

Зернохранилища этого типа предназначены для обеспечения предприятий товаром в виде зерновых, а также сопутствующих продуктов. Реализационные хранилища имеют возможность приема урожая от небольших фермерских хозяйств с целью последующей реализации зерна. Хранятся зерновые продукты на подобных предприятиях, как правило, в течение короткого времени и отпускаются сравнительно небольшими партиями.

Методы хранения зерна

Так как складироваться запасы овса, пшеницы ржи и других культур могут на разных предприятиях элеваторного типа, то и требования к их хранению будут разниться. На сегодняшний день практикуется три типа складирования зерна:

В России больше принято хранить зерно в охлаждённом состоянии или при помощи сухого способа.

Особенности хранения зерна насыпью

Хранить зерно насыпью считается наиболее эффективным методом для долгосрочного его сохранения в пунктах приёма, сортировки и очистки. При насыпном способе хранения используется сухой метод складирования, когда зерно просто ссыпается в огромные кучи. Этот метод по сравнению с другими имеет множество преимуществ, среди которых:

  • Рациональное использование ресурсов зернохранилища;
  • Удобство погрузки, разгрузки и транспортировки продукции;
  • Более эффективная борьба с вредителями;
  • Удобство мониторинга состояния зерновых масс;
  • Экономия средств на упаковке.

Технология хранения насыпью может применяться как для складских помещений, так и на открытых площадках зерновых комплексов. К фасовке зерна при условии сухого метода хранения прибегают только в случае с посевным материалом. В остальных случаях зерно хранится насыпью в специальных контейнерах элеваторов или в кучах, подпертых специальным ограждающим буртом и накрытых водонепроницаемым материалом.

Сухой метод хранения

При извлечении влаги из зерновых культур все вредоносные организмы переходят в состояние анабиоза. Такой принцип хранения базируется на методе ксероанабиоза. Дальше остается лишь оберегать зерно от поедания его различными насекомыми и грызунами. Метод полного или частичного высушивания применяется при длительном нахождении зерновых на базисных или фондовых хранилищах.

Способы обезвоживания зерновых продуктов могут отличаться, однако все методы условно подразделяются на два основных принципа сушки:

  • Без использования тепла;
  • При помощи тепловой энергии.

Наиболее рентабельным оказалась сушка зерновых культур, при которой они засыпаются в ёмкости и обрабатываются солнечным теплом и воздухом.

Хранение зерна без доступа кислорода

Безвоздушный метод хранения зерновых используются главным образом на производственных предприятиях, где важную роль играет качество сырья. Преимущество этого способа заключается в том, что при отсутствии кислорода в зерновой массе погибает большинство вредных паразитов в виде микроорганизмов или насекомых. Во время использования этой технологии хранения зерновая масса в условиях отсутствия доступа кислорода самоконсервируется, что способствует сохранению всех полезных свойств зерна. Обычно такую консервацию сырья используют для мукомольных или хлебопекарных предприятий.

Рекомендуем прочесть:  При Помощи Вакуумной Системы Вакс Можно Сохранить Помидоры Свежими До Нового Года Если Да То Как

Реализация технологии безвоздушного хранения осуществляется при использовании специальных герметичных емкостей, в которые помещается сырье. Иногда для ускорения процесса консервации используется углекислый газ или сухой лед, который выделяет углекислоту при контакте с воздухом.

Хранение зерновых культур в охлаждённом виде

Методика хранения зерновых при невысоких температурах пользуется популярностью на небольших фермерских или складских предприятиях. С экономической точки зрения этот метод уступает лишь сухому способу консервации зернового сырья, а также отмечается низким процентом потерь продукта.

Принцип действия метода охлаждения при хранении зерна схож с принципами его высушивания. Суть в том, что как при высоких, так и при умеренно низких температурах жизнь микроорганизмов и насекомых в зерновой массе замедляется или прекращается. Если во время сушки зерна, достаточно высыпать его на ровную поверхность обеспечить притоком солнечной и воздушной энергии, то для охлаждённого хранения необходимо искусственно создать температуру в пределах 5-10 градусов, что довольно дорого и проблематично в жаркие дни уборки урожая. Обычно при охлаждённом методе хранения зерна на складах задействуют приточно-вытяжную вентиляцию, которую включают летом по ночам, а в другие времена года – круглосуточно.

Иногда применяется метод перемешивания зерна, используя транспортерные ленты и вентиляторы. Однако такой метод менее популярен из-за увеличения затрат.

Хранение зерна в мешках

К такому методу хранения прибегают при задаче сохранить или транспортировать посадочные семена элитных сортов или же зерно первого урожая нового сорта. Семена простого посадочного материала обычно хранятся насыпью. Также в мешках принято хранить иногда калиброванный посадочный материал, либо дорогие сорта пшеницы и ячменя, которые имеют тонкостенную структуру.

Чтобы предотвратить порчу сырья, необходимо использовать тканевые грубые мешки. На элеваторах чаще применяются капроновые или полипропиленовые мешки, которые отличаются влагостойкостью и стойкостью к механическим повреждениям.

Иногда могут использоваться бумажные мешки с особой подкладкой из ткани. При изготовлении бумажных мешков используется специальная грубая крафт-бумага, которая широко применяется в упаковочной индустрии. Она гарантирует сохранность продукта и не выделяет вредных веществ.

Чаще всего мешки с зерном укладываются особым методом на поддоны из досок. При этом они укладываются двойником, тройником или пятерником. По нормативным требованиям, высота штабелей при ручном складировании должна составлять от 6 до 8 мешков, а при машинном – 10-12. Ширина между двумя штабелями и от штабеля до стены должна составлять не менее 0.7 м.

Требования к хранилищам

Для гарантии сохранности зернового сырья элеваторы должны укомплектовываться в соответствии со всеми техническими требованиями зернохранилищ. Также должны соблюдаться и технологии приемки, разгрузки, хранения и последующей сдачи зерна для транспортировки.

Размещается зерно в бункерах или помещениях складов согласно планам предыдущих лет. Но при всем ранее полученном позитивном опыте учитываются и возможности быстрой отгрузки зерна нужного сорта для транспортировки его по назначению.

Емкости и помещения зерновых складов должны быть в исправном состоянии. Если нужно, проводятся плановые ремонты и обеззараживание помещений.

Основные требования к технологиям хранения зерновых

Абсолютно на всех складских предприятиях зерно сортируется относительно количества влаги в нем, относительно его вида, засоренности и сорта. Смешивать разное зерно категорически запрещается. Относительно процентного содержания влаги зерновое сырье делится на:

Относительно степени засоренности его разделяют на:

  • Чистое сырье;
  • Зерно средней чистоты;
  • Cорное;
  • Cорное зерно свыше ограничительных кондиций.

Сырье с большим процентом засоренности предварительно подвергается очистке на элеваторе.

Зерно, заражённое клопом, клещом, морозостойкое, головневое зерно принято хранить на элеваторах в раздельных тарах или отсеках. Если в зерновой массе наблюдается большой процент проросшего материала, то такое сырье также хранится отдельно.

Во время сохранения зерна насыпью высота кучи устанавливается из расчета содержания влаги в ней и наличия мусора:

  • Высота кучи для сухого зерна не ограничивается нормами;
  • Для влажного зернового сырья она составляет не более 2 м;
  • Для кратковременного хранения влажного зерна, содержащего до 19% воды — полтора метра;
  • При влажности свыше 19% — 1 м.

Форма зерновой насыпи согласно нормам также должна иметь вид пирамиды, над которой производится тщательный надзор на протяжении всего срока хранения.

Нормы и показатели при хранении

Для проведения качественного мониторинга над хранимой насыпью ее условно разбивают на площади по сто квадратных метров, за которыми введут постоянное наблюдение, совершая периодические замеры температуры и влаги. Также на этих участках производят анализы относительно количества присутствующих вредителей.

Замеры производятся в 3 местах: в верхнем, нижнем и среднем слоях насыпи при условии, что она имеет высоту более полутора метров. После каждого замера термоштанга переставляется на 2 м.

Температурные показания снимаются при помощи специальных термоштанг, которые представляют собой термометры в защитных футлярах. Частота контроля относительно показаний степени зараженности регламентируется температурой и массой насыпи:

  • Раз в неделю – при температуре 10 градусов и выше;
  • Раз в две недели – при температуре ниже 10 градусов тепла;
  • Раз в месяц при – температуре 0 градусов и ниже.

Зерно, хранящееся в мешках, проверяют на заражённость один раз в месяц в зимний период и два раза летом.

Вредители и методы борьбы с ними

На элеваторах и в складах открытого типа всплеск активности всех насекомых, которые поедают зерно, наблюдается либо в жаркий летний период, либо при самосогревании зерна в емкостях для хранения. Также каждый вид насекомых занимает строго определенный слой зерна. Самыми распространенными вредителями являются:

Зимой эти вредители обычно не размножаются.

Основные методы борьбы с вредителями:

  • Химическая обработка полей до начала уборки урожая;
  • Обработка зерна на зернохранилищах;
  • Механическое удаление мелких насекомых при помощи решет;
  • Соблюдение температуры и влажности при сохранении зерна.

Перед складированием часто используются два основных метода дезинфекция зерна: газовая и аэрозольная обработка. Аэрозольный метод используется как для обработки складов, так и прилегающих к ним территорий. Для этого зачастую применяется пиретроидные инсектициды и фосфорорганические средства.

Аэрозольные методы борьбы с насекомыми зарекомендовали себя как довольно эффективные. Однако из экономических соображений на складах применяется менее затратная процедура газовой обработки помещений. В качестве отпугивающих средств используются фосфид алюминия и магния в таблетированной форме, а также бромистый этил. Газовую обработку складских помещений и емкостей для хранения проводят только лицензированные компании и квалифицированные специалисты.

Аналогом химическому воздействию на вредителей могут стать традиционные методы обработки сырья и складов:

  • Сушка зерна;
  • Охлаждение или повышение температуры складского помещения;
  • Установка феромонных ловушек и использование микробиологических препаратов;
  • Применение ядов для грызунов.

Такие методы борьбы с насекомыми являются более дешевыми, но при этом не менее эффективными.

Убыль во время хранения

Несмотря на соблюдение всех норм и создание идеальных условий на элеваторах, всё-таки сохранить зерно на 100% не получится. Существует такое понятие, как норма естественной убыли зерна. Например, при хранении зерна дольше 3 месяцев применяется такая формула: х=а+б>в/г, в которой:

  • а – убыль за предыдущий период;
  • б – разница между текущей и предыдущей нормами;
  • в – разница между средней и предыдущей нормами хранения;
  • г — количество месяцев хранения.

Естественная убыль – это закономерный процесс, который происходит вследствие потери влажности, очистки зерна, оседания минеральных примесей на дно хранилища и т.д.

Форма зерновой насыпи согласно нормам также должна иметь вид пирамиды, над которой производится тщательный надзор на протяжении всего срока хранения.

Химические показатели качества пшеницы. Влажность пшеницы

Влажность — один из наиболее важных факторов, влияющих на качество муки. Она имеет и непосредственное экономическое значение, поскольку наличие сухого вещества в пшенице обратно пропорционально количеству содержащейся в ней влаги. Так, в одной грузовой машине пшеницы с влажностью 14% содержится 70 гектолитров воды. Большая часть пшеницы, реализуемой в США, содержит около 14% влаги, но в более засушливых районах в сухое время года влажность может быть не выше 8%.

По существующим в настоящее время ценам истинная ценность вагонной партии пшеницы в 55 т с влажностью 8% будет на 250 долларов выше, чем равное количество пшеницы такого же качества, но с влажностью 14%. К сожалению, подобные различия в истинной ценности редко отражаются на фактических рыночных ценах.

Еще большее влияние влажность пшеницы оказывает на сохранность ее качества. Здоровая, сухая пшеница при правильном хранении не теряет своих ценных свойстве течение многих лет, а влажная пшеница может окончательно испортиться уже за несколько дней хранения. Вместе с тем невозможно установить точные пределы влажности, при которых будет обеспечено безопасное хранение, а также заранее предвидеть, как скоро пшеница может испортиться при любой данной влажности, так как, помимо уровня влажности, имеется целый ряд обстоятельств, оказывающих заметнее влияние на сохранность пшеницы. Тем не менее, в практических условиях хранения влажность является обычно основным фактором, от которого зависит сохранность качеств пшеницы. По мере приближения к критическому уровню этажности бывает достаточно самых незначительных отклонений, чтобы создать неблагоприятные условия для хранения зерна.

С другой стороны, и слишком сухая пшеница имеет свои недостатки. Зерно такой пшеницы становится очень хрупким и легко бьется. Особенно это проявляется при искусственной сушке пшеницы. Хотя при этом обычно и не пытаются довести влажность пшеницы до уровня ниже 13—14% все же часть пшеницы в каждой просушенной партии может оказаться более сухой в связи с тем, что в любой сушилке процесс сушки протекает неравномерно. Более сухое зерно дает больше боя, а битые зерна теряют свою мукомольную ценность, поскольку в процессе очистки они большей частью удаляются. Недостаток чрезмерно сухой пшеницы заключается также в том, что при повышенной сухости ее иногда намного труднее кондиционировать до такой влажности, которая требуется при размоле.

Согласно стандартам США, пшеницы твердозерная красная озимая, мучнистая красная озимая и белая с влажностью свыше 14%, а пшеница твердозерная красная яровая, дурум и красная дурум с влажностью свыше 14,5% классифицируются как влажная или классом по образцу. Такая пшеница считается пригодной для хранения в теплом климате, но в течение ограниченного срока, обычно не больше нескольких недель при обязательном условии, что влажность близка или не превышает указанные максимальные пределы. Для длительного хранения, в особенности при высоких температурах воздуха, гарантировать сохранность качества можно только при более низкой влажности.

Основной метод определения влажности состоит в высушивании навески пшеницы в течение одного часа в сушильном шкафу при температуре 130°. Как установлено Хартом и Нейштатом, результаты, получаемые при этом методе сушки, полностью совпадают с результатами сушки пшеницы по методу Фишера, который считается наиболее точным из существующих методов определения влажности зерна. Для большинства целей влажность пшеницы устанавливается электровлагомерами путем определения электропроводности или электроемкости. Показания электровлагомеров следует сверять с результатами основных методов анализа влажности, обычно методов сушки в сушильном шкафу. Определение влажности с помощью электровлагомеров связано с неизбежной погрешностью. Но при тщательном соблюдении условий пользования их показания достаточно точны для различных практических целей. Применение электро-влагомеров имеет большое практическое значение, поскольку влажность с их помощью определяется очень быстро.

Методы определения влажности зерна и трудности, встречающиеся при проведении таких анализов, подробно описаны в работе Зелени.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Методы определения влажности зерна и трудности, встречающиеся при проведении таких анализов, подробно описаны в работе Зелени.

Оцените статью
Не знаете как правильно сохранить продукты в свежести? ВкусЕды.ру